

Review Article

ISSN: 3048-5614

“BRAHMI (BACOPA MONNIERI): COGNITIVE ENHANCER IN AYURVEDA AND NEUROPHARMACOLOGY – AN INTEGRATIVE REVIEW”

Ms. Priya Bhaware¹

AFFILIATIONS:

1. Research Assistant, Ira Consultancy & Research Organisation, Bhosari, Pune, Maharashtra 411026

CORRESPONDENCE:

Ms. Priya Bhaware

EMAILID:

privyabhaware0123@gmail.com

FUNDING INFORMATION:

Not Applicable

How to cite this article:

Priya Bhaware, “*Brahmi (Bacopa monnieri): Cognitive Enhancer in Ayurveda and Neuropharmacology – An Integrative Review*” Asian Journal of Dravyaguna and Pharmacology. 2024;1(4):56-60.

ABSTRACT

Introduction: *Brahmi (Bacopa monnieri* Linn.), an important *Medhya Rasayana* in Ayurveda, has been traditionally prescribed for memory, intellect, and mental well-being. Its neuropharmacological potential has attracted increasing attention in the context of cognitive decline, stress disorders, and neurodegeneration. **Methods:** A comprehensive review was conducted through PubMed, Scopus, Web of Science, and Google Scholar, alongside Ayurvedic texts (*Charaka Samhita*, *Sushruta Samhita*, *Bhavaprakasha Nighantu*, *Ashtanga Hridaya*). Studies between 1950–2024 were analyzed. Inclusion criteria were preclinical, pharmacological, and clinical trials, while anecdotal reports and low-quality studies were excluded. **Results:** Ayurvedic texts describe *Brahmi* as *Medhya Rasayana*, promoting intellect, calming the mind, and treating *Unmada* (psychosis) and *Apasmara* (epilepsy). Phytochemical analysis reveals bacosides A and B, bacopasaponins, alkaloids, flavonoids, and sterols. Pharmacological studies demonstrate cholinergic modulation, antioxidant, anti-amyloid, anxiolytic, adaptogenic, and neuroprotective effects. Clinical studies suggest improvements in memory acquisition, attention, anxiety reduction, and symptomatic relief in ADHD and age-related cognitive decline. However, sample sizes and heterogeneity limit generalizability. **Discussion:** Ayurvedic *Medhya* properties resonate with neuropharmacological findings, especially in cognition, stress adaptation, and neurodegeneration. Standardization and large-scale trials remain pressing needs. **Conclusion:** *Brahmi* represents a unique bridge between Ayurveda and neuroscience. With its favorable safety profile and multi-targeted actions, standardized extracts could contribute significantly to cognitive health and management of neurodegenerative disorders.

KEYWORDS: ADHD, Ayurveda, *Bacopa monnieri*, Cognitive enhancement, Neuroprotection

INTRODUCTION

Ayurveda, the traditional system of Indian medicine, emphasizes *Medhya Rasayana* drugs for improving intellect (*Medha*), memory (*Smriti*), and concentration. Among these, *Brahmi* (*Bacopa monnieri* Linn., family: Plantaginaceae) is one of the most revered. It is classified as *Tridosahara* with special benefits for *Vata* and *Pitta* balance, promoting calmness and clarity of mind. Classical texts recommend *Brahmi* for insomnia, epilepsy, psychosis, anxiety, and age-related cognitive decline. In recent decades, *Brahmi* has gained global attention as a potential nootropic and neuroprotective agent. Its active constituents—primarily bacosides—have been studied for effects on cholinergic transmission, antioxidant defense, neuroplasticity, and amyloid pathology. With rising prevalence of dementia, stress-related disorders, and attention-deficit hyperactivity disorder (ADHD), scientific validation of *Brahmi* is increasingly relevant.

This review aims to consolidate classical Ayurvedic perspectives, phytochemistry, pharmacological evidence, and clinical findings on *Bacopa monnieri*, critically analyzing its role as a cognitive enhancer and identifying directions for future research.

MATERIALS AND METHODS

A structured review was performed between January–March 2025.

Databases searched: PubMed, Scopus, Web of Science, Embase, Google Scholar.

Classical texts consulted: *Charaka Samhita*, *Sushruta Samhita*, *Ashtanga Hridaya*, *Bhavaprakasha Nighantu* (original and translated).

Search terms: “*Brahmi*,” “*Bacopa monnieri*,” “cognition,” “memory,” “neuropharmacology,” “Ayurveda.”

Inclusion criteria:

- Original articles on phytochemistry, pharmacology, preclinical, and clinical trials (1950–2024).
- Systematic reviews and meta-analyses.
- Ayurvedic classical references.

Exclusion criteria: anecdotal reports, duplicates, non-English papers without translation, poor methodology.

Data were categorized under five domains: Ayurveda, phytochemistry, pharmacology, clinical studies, and safety.

OBSERVATION AND RESULTS

1. Classical Ayurvedic Perspective

Brahmi is described in Ayurveda as a potent *Medhya Rasayana*. Its properties include:

- Rasa (taste):** *Tikta* (bitter)
- Guna (qualities):** *Laghu* (light), *Sara* (mobile)
- Virya (potency):** *Sheeta* (cooling)
- Vipaka (post-digestive effect):** *Madhura* (sweet)

Classically, it is indicated for:

- Smriti-bhramsha* (memory impairment)
- Unmada* (psychosis)
- Apasmara* (epilepsy)
- Anidra* (insomnia)
- Chittodvega* (anxiety and restlessness)

Formulations like *Brahmi Ghrita* and *Saraswatarishta* remain popular for neuropsychiatric disorders.

2. Phytochemistry of *Brahmi*

Major constituents:

- Saponins:** bacosides A & B, bacopasaponins, bacopasides I–XII
- Alkaloids:** brahmine, herpestine
- Flavonoids:** luteolin, apigenin
- Sterols:** stigmasterol, β -sitosterol
- Other compounds:** polyphenols, cucurbitacins

Bacosides, the primary bioactive fraction, enhance synaptic transmission and neuroplasticity. Standardized extracts typically contain $\geq 50\%$ bacosides.

3. Pharmacological Studies

3.1 Cognitive enhancement

Animal studies confirm improvements in learning and memory via modulation of hippocampal activity and acetylcholine availability. Synaptogenesis and dendritic arborization are enhanced.

3.2 Neuroprotective effects

- Antioxidant:** scavenges free radicals, enhances superoxide dismutase, catalase, and glutathione peroxidase.
- Anti-amyloid:** inhibits β -amyloid aggregation, protects neurons from toxicity.
- Anti-apoptotic:** reduces caspase activation and neuronal death.

3.3 Cholinergic modulation

Enhances acetylcholine synthesis, inhibits acetylcholinesterase, and improves cholinergic neurotransmission—mechanisms relevant to

3.4 Anxiolytic and adaptogenic effects

Experimental studies demonstrate reduced corticosterone, improved resilience to chronic stress, and modulation of serotonergic pathways.

4. Clinical Studies

Population	Study Design	Intervention & Dose	Duration	Outcomes / Key Findings	Reference
Healthy adults (n=46)	Randomized, double-blind, placebo-controlled	Standardized Bacopa extract 300 mg/day	12 weeks	Improved memory acquisition and retention, enhanced cognitive processing speed	6
Healthy adults (n=76)	Randomized, double-blind, placebo-controlled	Standardized Bacopa extract 300 mg/day	12 weeks	Improved delayed word recall and verbal learning	10
Middle-aged adults (n=76)	Randomized, double-blind	Bacopa extract 300 mg/day	12 weeks	Reduced anxiety and depression scores, improved cognitive performance	7
Elderly adults (n=60)	Randomized, placebo-controlled	Bacopa extract 300 mg/day	12 weeks	Modest improvement in memory tests; some improvements in attention	8
Healthy adults (n=60)	Randomized, placebo-controlled	Bacopa extract 300 mg/day	12 weeks	Improved mood, decreased cortisol levels, enhanced stress tolerance	12
Children with ADHD (n=36)	Open-label clinical trial	Bacopa extract 225 mg/day	12 weeks	Reduced hyperactivity and impulsivity, improved attention and restlessness	14
Adults (meta-analysis, 9 RCTs)	Systematic review & meta-analysis	Standardized Bacopa extracts (200–450 mg/day)	6–12 weeks	Consistent improvement in memory retention; variable effects on attention	9

5. Safety, Toxicity, and Standardization

- Safe up to 450 mg/day standardized extract (bacosides $\geq 50\%$).
- Mild GI side effects: nausea, cramping, diarrhea.
- No major adverse events reported in trials.

- Variability in bacoside content is a challenge; standardization essential for reproducibility.

DISCUSSION

Ayurvedic concepts of *Medhya Rasayana* emphasize multi-dimensional cognitive enhancement, stress resilience, and mental calmness. This aligns remarkably with modern neuropharmacological

evidence on *Brahmi*.

Convergence points:

- *Smriti vardhana* (memory enhancement) ↔ improved learning and recall in RCTs.
- *Chittodvega shamana* (anxiolytic) ↔ reduced anxiety and cortisol in clinical studies.
- *Unmada* and *Apasmara* treatment ↔ antiepileptic and neuroprotective animal data.

Strengths:

- Strong experimental validation for memory and neuroprotection.
- Multiple human trials, including meta-analyses, support efficacy.
- Favorable safety profile.

Limitations:

- Clinical studies often small, heterogeneous in design and extract type.
- Variable standardization of bacosides limits reproducibility.
- Lack of large multicenter RCTs in dementia and neuropsychiatric disorders.
- Long-term safety in special populations (pregnancy, children, elderly) needs more data.

Future prospects:

- Development of phytopharmaceuticals with defined bacoside content.
- Exploration of *Brahmi* in Alzheimer's, Parkinson's, and depression through integrative models.
- Systems biology approaches to link Ayurvedic concepts (e.g., *Medhya*) with molecular targets.
- Innovative formulations (nanoencapsulation, polyherbal synergies with *Shankhapushpi*, *Ashwagandha*).

Thus, *Brahmi* illustrates how traditional Ayurveda aligns with modern neuroscience but requires rigorous clinical validation to achieve global therapeutic status.

CONCLUSION

Brahmi (*Bacopa monnieri*) occupies a central place in Ayurveda as a *Medhya Rasayana* for memory and intellect. Phytochemistry identifies bacosides as key neuroactive molecules. Preclinical and pharmacological studies confirm antioxidant, cholinergic, neuroprotective, anxiolytic, and adaptogenic actions. Clinical studies demonstrate benefits in memory, attention, anxiety, ADHD, and

age-related cognitive decline.

The herb is generally safe, with only mild gastrointestinal side effects reported at therapeutic doses. However, variability in extract standardization and limited large-scale trials restrict universal clinical recommendations.

From an integrative standpoint, *Brahmi* represents an exceptional bridge between Ayurveda and neuropharmacology. It offers a multi-targeted approach to cognitive health, stress management, and possibly neurodegenerative disorders.

Future research must focus on:

- Standardized, bacoside-rich formulations.
- Large, multicenter randomized controlled trials.
- Long-term safety evaluation.
- Exploration in dementia, depression, and epilepsy as adjunctive therapy.

In conclusion, *Brahmi* exemplifies the potential of Ayurvedic nootropics in modern medicine. By merging traditional wisdom with scientific rigor, it can emerge as a globally accepted cognitive enhancer and neuroprotective phytomedicine.

REFERENCES

1. Sharma PV. *Charaka Samhita*. Varanasi: Chaukhamba Orientalia; 2014.
2. Shastri AD. *Sushruta Samhita*. Varanasi: Chaukhamba Sanskrit Sansthan; 2015.
3. Tripathi B. *Ashtanga Hridaya*. Delhi: Chaukhamba Pratishtan; 2012.
4. Chunekar KC. *Bhavaprakasha Nighantu*. Varanasi: Chaukhamba Bharati Academy; 2010.
5. Russo A, Borrelli F. *Bacopa monnieri*: a reputed nootropic plant. *Phytomedicine*. 2005;12(4):305-17.
6. Stough C, et al. The chronic effects of *Bacopa monnieri* on cognitive function in healthy humans. *Psychopharmacology*. 2001;156(4):481-4.
7. Calabrese C, et al. Effects of *Bacopa monnieri* on cognitive performance, anxiety, and depression. *J Altern Complement Med*. 2008;14(6):707-13.
8. Morgan A, Stevens J. Does *Bacopa monnieri* improve memory performance in older persons? *J Altern Complement Med*. 2010;16(7):753-9.
9. Kongkeaw C, et al. Meta-analysis of randomized controlled trials on cognitive effects of *Bacopa*

monnier. *J Ethnopharmacol.* 2014;151(1):528-35.

10. Roodenrys S, et al. Chronic effects of *Bacopa monnieri* on human memory. *Neuropsychopharmacology.* 2002;27(2):279-81.

11. Aguiar S, Borowski T. Neuropharmacological review of *Bacopa monnieri*. *Rejuvenation Res.* 2013;16(4):313-26.

12. Pase MP, et al. Cognitive effects of *Bacopa monnieri*: randomized, placebo-controlled trial. *Hum Psychopharmacol.* 2012;27(3):295-302.

13. Kean JD, et al. Mechanistic insights into *Bacopa monnieri*'s neuroprotective effects. *Phytother Res.* 2016;30(3):437-45.

14. Negi KS, et al. Clinical evaluation of *Bacopa monnieri* in children with ADHD. *Indian J Psychiatry.* 2000;42(3):189-92.

15. Limpeanchob N, et al. Neuroprotective effect of *Bacopa* against β -amyloid toxicity. *J Ethnopharmacol.* 2008;120(1):112-7.

16. Uabundit N, et al. Cognitive enhancement and neuroprotective effects of *Bacopa* in rats. *J Ethnopharmacol.* 2010;127(1):26-31.

17. Saini N, Singh D. Antidepressant potential of *Bacopa monnieri*. *Pharm Biol.* 2012;50(12):1579-86.

18. Bhattacharya SK, et al. Anxiolytic-antidepressant activity of *Bacopa*. *Indian J Pharmacol.* 2000;32:152-6.

19. Singh HK, Dhawan BN. Neuropsychopharmacological effects of *Bacopa*. *Indian J Pharmacol.* 1997;29:359-65.

20. Gowda S, et al. *Bacopa monnieri* in age-related cognitive decline: A review. *Front Aging Neurosci.* 2021;13:650046.